5,214 research outputs found

    A Note on Near-factor-critical Graphs

    Full text link
    A near-factor of a finite simple graph GG is a matching that saturates all vertices except one. A graph GG is said to be near-factor-critical if the deletion of any vertex from GG results in a subgraph that has a near-factor. We prove that a connected graph GG is near-factor-critical if and only if it has a perfect matching. We also characterize disconnected near-factor-critical graphs.Comment: 4 page

    Digit Recognition Using Composite Features With Decision Tree Strategy

    Get PDF
    At present, check transactions are one of the most common forms of money transfer in the market. The information for check exchange is printed using magnetic ink character recognition (MICR), widely used in the banking industry, primarily for processing check transactions. However, the magnetic ink card reader is specialized and expensive, resulting in general accounting departments or bookkeepers using manual data registration instead. An organization that deals with parts or corporate services might have to process 300 to 400 checks each day, which would require a considerable amount of labor to perform the registration process. The cost of a single-sided scanner is only 1/10 of the MICR; hence, using image recognition technology is an economical solution. In this study, we aim to use multiple features for character recognition of E13B, comprising ten numbers and four symbols. For the numeric part, we used statistical features such as image density features, geometric features, and simple decision trees for classification. The symbols of E13B are composed of three distinct rectangles, classified according to their size and relative position. Using the same sample set, MLP, LetNet-5, Alexnet, and hybrid CNN-SVM were used to train the numerical part of the artificial intelligence network as the experimental control group to verify the accuracy and speed of the proposed method. The results of this study were used to verify the performance and usability of the proposed method. Our proposed method obtained all test samples correctly, with a recognition rate close to 100%. A prediction time of less than one millisecond per character, with an average value of 0.03 ms, was achieved, over 50 times faster than state-of-the-art methods. The accuracy rate is also better than all comparative state-of-the-art methods. The proposed method was also applied to an embedded device to ensure the CPU would be used for verification instead of a high-end GPU

    Developing an EEG-based on-line closed-loop lapse detection and mitigation system

    Get PDF
    © 2014 Wang, Huang, Wei, Huang, Ko, Lin, Cheng and Jung. In America, 60% of adults reported that they have driven a motor vehicle while feeling drowsy, and at least 15-20% of fatal car accidents are fatigue-related. This study translates previous laboratory-oriented neurophysiological research to design, develop, and test an On-line Closed-loop Lapse Detection and Mitigation (OCLDM) System featuring a mobile wireless dry-sensor EEG headgear and a cell-phone based real-time EEG processing platform. Eleven subjects participated in an event-related lane-keeping task, in which they were instructed to manipulate a randomly deviated, fixed-speed cruising car on a 4-lane highway. This was simulated in a 1st person view with an 8-screen and 8-projector immersive virtual-reality environment. When the subjects experienced lapses or failed to respond to events during the experiment, auditory warning was delivered to rectify the performance decrements. However, the arousing auditory signals were not always effective. The EEG spectra exhibited statistically significant differences between effective and ineffective arousing signals, suggesting that EEG spectra could be used as a countermeasure of the efficacy of arousing signals. In this on-line pilot study, the proposed OCLDM System was able to continuously detect EEG signatures of fatigue, deliver arousing warning to subjects suffering momentary cognitive lapses, and assess the efficacy of the warning in near real-time to rectify cognitive lapses. The on-line testing results of the OCLDM System validated the efficacy of the arousing signals in improving subjects' response times to the subsequent lane-departure events. This study may lead to a practical on-line lapse detection and mitigation system in real-world environments
    • …
    corecore